Tetrahedron Letters No. 3, pp. 25-26, 1960. Pergamon Press Ltd. Printed in Great Britain.

REACTIONS OF FREE RADICALS AND UNSYMMETRICAL ORGANO-MERCURIC COMPOUNDS

A.N.Nesmeyanov, A.E.Borisov, A.I.Kovredov and E.I.Golubeva Moscow University

(Received 18 January 1960)

THE benzoyl peroxide-initiated reaction of carbon tetrachloride and symmetrical organo-mercuric compounds has been reported to be as follows: 1

$$R_2Hg + CC1_4 \longrightarrow RHgC1 + RCC1_3$$

In the present study the homolytical exchange reaction was used between fully substituted unsymmetrical organo-mercuric compounds (prepared by the method of K.A.Kocheshkov and R.Kh.Freidlina) and compounds Nos. 1, 2 and 3, following the Grignard method.

Constants for the compounds are presented in the Table. RHgR' compounds react with carbon tetrachloride in the presence of peroxide according to the scheme:

A.E.Borisov, <u>Izv.Akad.Nauk SSSR,Otdel.khim.nauk</u> 524 (1951).

The less electronegative radical always remains attached to mercury in RHgCl² and the more electronegative one converts to RCCl₃. In the case of R and R' radical characteristics close spacing, as in No.7, all four possible combinations RHgCl, R'HgCl, RCCl₃ and R'CCl₃, result.

Thus the CCl free radical attacks the same mercury attached radical, which undergoes electrophylic attack by hydrogen ions during acid decomposition of RHgR'.

No.	Original compounds	Melting points	Isolated compounds and yields (%)
1 -	^{С6^Н5^{Н6С}2^Н5}	Oil	C ₂ H ₅ H ₈ C1(87%) + C ₆ H ₅ CC1 ₃
2	^{С6^Н5^{СН}2^{Н8С}4^Н9}	Oil	c ₆ H ₅ CH ₂ H ₆ C1(73%) + c ₄ H ₉ CC1 ₃ (56%)
3	C6H5HgC4H9	011	C4H9HgC1(76%) + C6H5CC13(72%)
4	c6H2Hec6H11	59 - 61°	C ₆ H ₁₁ H _g C1(83%) + C ₆ H ₅ CC1 ₃ (43%)
5	^С 6 ^Н 5 ^{НgCH₂C6^Н5}	011	C ₆ H ₅ CH ₂ H ₈ C1(73%) + C ₆ H ₅ CC1 ₃ (33%)
6	^С 6 ^Н 5 ^{НgC} 6 ^Н 4 ^{СН} 3-2	167 - 192 ⁰	C ₆ H ₅ H ₈ C1(88%) +
7	P-CH3C6H4H8C6H4CH3-0	159 - 189 ⁰	P-CH ₃ C ₆ H ₄ CCL ₃ (82%) O-CH ₃ C ₆ H ₄ H ₈ C1(57%) + O-CH ₃ C ₆ H ₄ CCl ₃ (40%) + P-CH ₃ C ₆ H ₄ H ₈ C1(43%) + P-CH ₃ C ₆ H ₄ CCl ₃ (60%)
8	^С 6 ^Н 5 ^{НgC} 10 ^Н 7 ^{-а}	165 - 195 ⁰	C ₆ H ₅ H ₈ C1(73%) + a=C ₁₀ H ₇ CC1 ₃ (73%)

M.S.Kharasch and R.Marker, J.Amer.Chem.Soc. 48, 3130 (1926);
A.N.Nesmeyanov and K.A.Kocheshkov, Uch.Zap.Mosk.Univ. No.3, 283 (1934).