Tetrahedron Letters No. 3, pp. 25-26, 1960. Pergamon Press Ltd. Printed in Great Britain. ## REACTIONS OF FREE RADICALS AND UNSYMMETRICAL ORGANO-MERCURIC COMPOUNDS A.N.Nesmeyanov, A.E.Borisov, A.I.Kovredov and E.I.Golubeva Moscow University (Received 18 January 1960) THE benzoyl peroxide-initiated reaction of carbon tetrachloride and symmetrical organo-mercuric compounds has been reported to be as follows: 1 $$R_2Hg + CC1_4 \longrightarrow RHgC1 + RCC1_3$$ In the present study the homolytical exchange reaction was used between fully substituted unsymmetrical organo-mercuric compounds (prepared by the method of K.A.Kocheshkov and R.Kh.Freidlina) and compounds Nos. 1, 2 and 3, following the Grignard method. Constants for the compounds are presented in the Table. RHgR' compounds react with carbon tetrachloride in the presence of peroxide according to the scheme: A.E.Borisov, <u>Izv.Akad.Nauk SSSR,Otdel.khim.nauk</u> 524 (1951). The less electronegative radical always remains attached to mercury in RHgCl² and the more electronegative one converts to RCCl₃. In the case of R and R' radical characteristics close spacing, as in No.7, all four possible combinations RHgCl, R'HgCl, RCCl₃ and R'CCl₃, result. Thus the CCl free radical attacks the same mercury attached radical, which undergoes electrophylic attack by hydrogen ions during acid decomposition of RHgR'. | No. | Original compounds | Melting
points | Isolated compounds and yields (%) | |-----|---|-------------------------------|--| | 1 - | ^{С6^Н5^{Н6С}2^Н5} | Oil | C ₂ H ₅ H ₈ C1(87%) + C ₆ H ₅ CC1 ₃ | | 2 | ^{С6^Н5^{СН}2^{Н8С}4^Н9} | Oil | c ₆ H ₅ CH ₂ H ₆ C1(73%) + c ₄ H ₉ CC1 ₃ (56%) | | 3 | C6H5HgC4H9 | 011 | C4H9HgC1(76%) + C6H5CC13(72%) | | 4 | c6H2Hec6H11 | 59 - 61° | C ₆ H ₁₁ H _g C1(83%) + C ₆ H ₅ CC1 ₃ (43%) | | 5 | ^С 6 ^Н 5 ^{НgCH₂C6^Н5} | 011 | C ₆ H ₅ CH ₂ H ₈ C1(73%) + C ₆ H ₅ CC1 ₃ (33%) | | 6 | ^С 6 ^Н 5 ^{НgC} 6 ^Н 4 ^{СН} 3-2 | 167 - 192 ⁰ | C ₆ H ₅ H ₈ C1(88%) + | | 7 | P-CH3C6H4H8C6H4CH3-0 | 159 - 189 ⁰ | P-CH ₃ C ₆ H ₄ CCL ₃ (82%) O-CH ₃ C ₆ H ₄ H ₈ C1(57%) + O-CH ₃ C ₆ H ₄ CCl ₃ (40%) + P-CH ₃ C ₆ H ₄ H ₈ C1(43%) + P-CH ₃ C ₆ H ₄ CCl ₃ (60%) | | 8 | ^С 6 ^Н 5 ^{НgC} 10 ^Н 7 ^{-а} | 165 - 195 ⁰ | C ₆ H ₅ H ₈ C1(73%) + a=C ₁₀ H ₇ CC1 ₃ (73%) | M.S.Kharasch and R.Marker, J.Amer.Chem.Soc. 48, 3130 (1926); A.N.Nesmeyanov and K.A.Kocheshkov, Uch.Zap.Mosk.Univ. No.3, 283 (1934).